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Anderson Localization and Wave Absorption 
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Experimental signatures of classical wave localization in the absence and in the 
presence of attenuation are analyzed. The different regimes of the attenuation, 
reflection, and transmission coefficients for the "diffusive" and "localized" 
regimes are discussed. Apparent contradictory results presented previously by 
John and Anderson on the renormalization of absorption by localization are 
reconciled and shown to apply to different situations. 

KEY WORDS: Waves and wave propagation; localization in disordered 
structures. 

1. I N T R O D U C T I O N  

When a wave packet enters an inhomogeneous medium, some of its 
components suffer scattering events. In such a situation, two and possibly 
three different regimes occur, according to the distance traveled by the 
wave from its point of entrance or creation in the medium. (~-3) 

(i) At scales smaller than the elastic mean free path le, the wave is 
propagating: its energy travels with an average velocity c and the energy 
flux J = c I  is proportional to the energy density L In many cases, the 
energy "transport" of a classical wave in a random medium corresponds to 
this class, since the mean free path is often found to be larger than realistic 
sampie sizes. This is in contrast to the problem of electronic transport, 
where the "balistic" regime is rarely encountered. 

(ii) At scales larger than le, the energy of the wave is diffusive, with 
a frequency-dependent diffusion coefficient Do(~o)=c(~O)le(o)/3. The 
average velocity of the wave (averaged over a volume >> led) is zero and the 
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energy flux J = - D o V I  is proportional to the gradient of the energy 
density. A simple and useful picture is to view the wave as undergoing 
"random walks" of elementary step length le (covered in a "collision" time 
T e with the average velocity c). 

(iii) However, in contrast to the transport of molecules in a gas, due 
to the inherent wave nature of the problem, interference between waves 
following different diffusing paths occurs. In general, the coherent inter- 
ference contributions average to zero except in the backward direction, for 
which two contrapropagating paths correspond to the same phase and 
therefore interfere constructively for the reflection. For wavelengths 2 ~ le, 
this is the "weak localization" regime, for which the diffusion constant is 
renormalized to D = Do l l -~ (2 / l e )  2] in three dimensions, (4) the only case 
which will be considered here, with 7 a number of order one. For larger 
disorders, le decreases and 2/le may become of order unity, leading to a 
breakdown of the perturbation expansion. This regime of strong Anderson 
localization can be analyzed, among other techniques, (4'5) within a self- 
consistent diagrammatic approach extending the perturbative weak 
localization treatment of the corrections to classical diffusive behavior, 
taking into account the constructing interferences between contrapropagating 
waves in loops in k space. 

Anderson localization is observed or predicted in various electronic 
systems. ~4) Recently, localization has been recognized theoretically as a 
possible phenomenon for classical waves: e.g., for surface waves in 
hydrodynamics, (6) in acoustics, ~7'8) for electromagnetic waves in plasmas, (9~ 
for third or fourth sound in helium fluid (1~ (for review see refs. 2, 3, 11, 
and 12), and in various experiments proposed or realized ~(~8'13-16) mostly 
for one-dimensional systems or in the weak localization regime. In a 
previous work, (17) favorable experimental situations which should allow the 
observation of the strong localization regime in the classical acoustic and 
electromagnetic wave context were discussed. 

In this paper, I attempt to clarify and extend existing work on the 
experimental signatures of the localization regime. Real systems often 
present absorption. I therefore focus on the interrelation and competition 
between wave interferences leading to Anderson localization and the wave 
absorption characterized by an attenuation length l a. Other work dealt 
with this problem, but led to contradictory results, since John (18) predicts 
an increase of the renormalized energy absorption coefficient near the 
mobility edge, whereas Anderson (19) finds that the absorption (as measure 
by one minus the reflection coefficient in a semi-infinite slab geometry) 
decreases near the mobility edge. I show that both authors are right and 
explain that their results apply to different geometries. Using scaling 
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arguments, I confirm the increase of the renormalized absorption coeff• 
in agreement with ref. 18. When the source of the wave energy is placed 
inside a random medium of size L, this leads to a decrease of the energy 
leakage outside the cavity of size L as expected. However, in the slab 
geometry for which a wave is created outside the random medium and tries 
to propagate through it, the renormalization of the diffusion coefficient 
tends to prevent the wave from entering significantly in the random absor- 
bing medium and therefore competes with the increase of the renormalized 
absorption coefficient. It turns out that the decrease in wave penetration 
wins over the increase of absorption coefficient, leading to a global increase 
of the reflection coefficient, in agreement with ref. 19. 

The presentation is similar to that of Anderson, (19) which I make 
precise and extend in several aspects. 

2. NOTATIONS AND F O R M A L I S M  

Following Anderson, (t9) I will essentially consider the slab geometry 
where a wave, with energy density I and energy flux J =  cI, is incident 
along the direction 0x from the left on a disordered system beginning at 
x = 0 and of total width L. The cavity configuration where the wave source 
is inside the scattering medium will be briefly addressed, to clarify the role 
of localization in the renormalization of wave absorption. 

In the propagative regime, i.e., at scales x <<, le, I ( x )  is constant in the 
absence of dissipation. In the presence of a dissipation described by an 
attenuation length la, the wave energy density decreases as 

I( x ) = Io exp(--x/t~) (1) 

This expression will allow us to identify, in the following, the renormalized 
dissipation length. 

The diffusing regime, occurring at scales x > le, is described by the 
diffusion equation div J + ~?I/t?t = 0, with J =  --D VI and appropriate 
boundary conditions. In the absence of absorption, OIfi?t=O in the 
stationary state and one has 

div(D VI) = 0, 121 = 0 (2) 

In the presence of absorption, 3I/3t = - I / % ,  where za = la/c, which gives 

div(D VI) - I/za = O, l s  1 r 0 (3) 

Coherent effects leading to localization will be taken into account 
phenomenologically by introducing in Eq. (2) and (3) a renormalized diffu- 
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sion coefficient. The analysis will use the results of the self-consistent theory 
of localization (4'5) in conjunction with scaling ideas applied to the diffusion 
equation. Coherent effects lead to the introduction of a finite correlation 
length ~ + which is the distance beyond which the diffusion coefficient takes 
its asymptotic yalue D. The value of D is smaller than the microscopic Do 
due to coherent backscattering interferences. For stronger disorder (le < lc, 
where lc ~ 2 is the localization threshold), one enters into the localization 
regime and the asymptotic value of the diffusion coefficient vanishes. The 
typical length scale over which D goes to zero is the so-called localization 
length, denoted ~_. 

In the self-consistent theory of localization (4'5) the diffusion coefficient 
is expressed in terms of r + (for l~ > lc) or ~ _ (for le < lc) as follows: 

(4) 

For l e > lc, there is a simple scaling law relating D to the correlation length 
~+, 

D=DoU~+ (5) 

Equation (5) obtained from Eq. (4) is thus consistent with a usual scaling 
assumptionJ 2~ The localization length 4- is, in the self-consistent theory 
of localization, the infrared cutoff ensuring the nonnegativity of D for 
l e < l c .  It essentially suppresses the contribution to the renormalized 
diffusion coefficient of loops larger than r thus implying that at scales 
larger than ~_, D = 0. It is given by 

1 - ( l c / l e )  2 = (le/~ ) tan-~(~_/le) 

Both ~ + and ~_ show critical behavior in the vicinity of the critical point 
le = lc : 

+ ~ le{(le- lc)/le} v 
(6) 

4 -  ~ l e { ( l c - l e ) / l e }  - v  

with v ,~ 1 / ( d -  2). (2,4,5,20) Note that Eq. (5) is valid for large systems of size 
L > ~ + .  When I e ~ l  +, 4+ ~ + ~ .  In the critical region, L is bound to 
become smaller than 4+ and one is confronted with finite-size effects. 
Within the scaling theory of localization, (2~ a scaling assumption gives for 
the conductance of electronic systems g ( L ) ~ D ( L ) L  d-2.  At (or near) the 
transition point, g ( L ) =  gc = const independent of L and therefore D ( L )  
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scales like L 2.a, which gives, for d =  3, a length-dependent diffusion coef- 
ficient scaling as 

D(x) ,~ Doldx (7) 

This scaling (7) can also be viewed as stemming from a finite-size scaling 
ansatz: D = Do(le/~ + ) f (L/r  + ). Within the self-consistent theory of 
localization, it results from the appearance of an infrared cutoff L -~ in the 
integration over q performed in Eq. (4). In the limit where 4+ ~ +o% the 
finite-size effect suppresses long paths and therefore changes the renor- 
malization of D to a finite value. Supposing a power-law dependence of 
f (z)  for small z, this recovers Eq. (7). This scaling is also in agreement with 
a renormalization group treatment using a field-theoretic formalism (18) and 
diagrammatic techniques. (5) 

Equations (2), (3), and (5)-(7) constitute our starting point for 
discussing the different following regimes. 

3. A T T E N U A T I O N ,  T R A N S M I S S I O N ,  A N D  REFLECTION 
COEFFICIENTS 

3.1. Dif fusive Regime (L > / e , / c  ~ / e )  

In the absence of dissipation, it is easy to solve Eq. (2) with D = D o 
independant of x with propagating condition for x <  0 and x > L  11'3) for 
the transmission coefficient 

To = D o/eL (8) 

The reflection coefficient is of course R = 1 - T o. 
In the presence of a small dissipation (la finite but large), the result is 

very different from Eq. (8) and is obtained from Eq. (3): 

T ~ e x p { - L / L a }  for L>La=(lale) u2 (9) 

which defines a new dissipation length "renormalized" by the diffusive 
nature of the wave energy transport. This result can be interpreted 
intuitively as follows. The transport of the energy can be described in terms 
of a sum over random walks W of different length F whose average "true" 
length is (F)~cL2/D,~L2f le  ((F~/c is the average time taken by the 
diffusive wave to cross the distance L). Here, I neglect the difference 
between D/c and le. One can estimate T by a sum over paths of length F, 
each weighted by the corresponding dissipation factor exp ( -F / l a ) :  

.,~ f dF P(F) exp( - F/I~) (10) T 
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where P(F) is the fraction of the paths having the real length F for a 
gyration radius L: P(F),,~ F -d/2 exp(-L2/2lr Putting this expression in 
the integral and computing it within a saddle point approximation for the 
factor - F =  Lz/2IeF+ F/l~ + (d/2) log File in the exponential yields the 
value of F at the saddle point: 

l~saddte ~, L(la/le) 1/2 for L > La 

,,.~L2/le for L < L a  
(11) 

Note that the expression for /-'saddle is not changed when taking into 
account the distortion of the probability distribution P(F) due to the 
constraint that the paths must reach the "interface" x = L for the first time 
without previous crossing. One thus recovers Eq. (9) for L > La whereas 

T , ~ e x p ( - L Z / L  2) for L < L  a 

Equation (11) shows that the transmission of the wave energy is controlled 
by rare but "efficient" paths whose real lengths scale as L instead of L 2 for 
typical random walks. 

At scales x < La, Eq. (3) simplifies to Eq. (2), stating that the medium 
is nonabsorbent up to the thickness La. Following the argument of ref. 19, 
one estimates the reflection coefficient as that of an effective nonabsorbing 
system of size La, 

R : ] - T o ( L a )  : 1 - ( l e / l a )  1/2 (12) 

Exact results using Boltzmann-type radiation transfer equation confirm this 
well-known result. (1" 22) Note that the effective attenuation length La is the 
mean distance covered by the diffusive wave energy on a time equal to the 
dissipation time Za: 

D(La)za,~, 2 ,,~L a (13) 

3.2. Cr i t ica l  T r a n s p o r t  (L > le ,  Ic ~ le) 

3.2. 1. Case L > (+ .  In the absence of dissipation, one can use the 
expression (8) for T o with the correct value of D given by Eq. (5). Using 
the scaling law (6) for ~ +, one obtains the expression for the transmission 
factor 

G ~ (/~ -/~)/L 

This is in agreement with ref. 19 after correcting a misprint. 

(14) 
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In the presence of dissipation, since D given by Eq. (5) is a constant 
at the scale L, the discussion follows that of Section 3.-1 and the results 
can be transcribed by replacing le by l~/~ + ,~ l e -  lc, that is, La by 

L~ ~ [la(le -- /c)]  1/2 = [lale] 1/Z(le/~ + )1/2 (15) 

L] can also be obtained directly from an argument similar to that of 
Eq. (13): D(~+)% ~ L,~ 2. I have made use of Eq. (13), which is the basis of 
the relationship between attenuation and the scaling of the diffusion 
coefficient. 

In sum, we obtain 

T ~ e x p [ - ( L / U a )  2] for ~ + < L < L ~  (16) 

T ~ e x p ( - L / L ~ )  for 4 + < L ~ < L  (17) 

valid not too near the critical point (~ + < L]). By comparison with Eq. (1), 
Eq. (17) defines the renormalized dissipation length L~. Its scaling (15) has 
been obtained previously by John using a field-theoretic formulation, (18~ 
which now takes a straightforward physical meaning: a dissipation length 
(laDo/e) m ~ (lale) 1/2 is the result of the random walk trajectory followed by 
the wave packets, as discussed in Section 3.1. Now, changing D o into D 
leads to Eq. (15), which contains both the effect of the diffusion and that 
of the coherent effect of localization. It is remarkable that the knowledge 
of the scaling of the diffusion coefficient enables one to obtain the form of 
the renormalization of the attenuation ~ ~ (L~) -1, which turns out to be 
intimately coupled to it. 

The reflection coefficient R is obtained as before by putting the value 
of L~ in the expression (14) for T~, which yield (19) 

R ~ 1 - To(La) ~ 1 [(le -- l~)/la] 1/2 

3.2.2. Case L < ( + .  In the absence of dissipation, one has to solve 
Eq. (2) with a scale-dependent diffusion coefficient given by Eq. (7). The 
result is (19) 

T ~  ( U L )  ~ (18) 

This result is recovered simply from To [Eq. (8)] using the finite-size 
scaling D ~ DolJL .  This L 2 power law is the signature of the localization 
critical region in the absence of dissipation. 

In the presence of dissipation, we have to solve Eq. (3) with a space- 
dependent diffusion coefficient given by Eq. (7). For large x, its leading 
form can be rearranged under the form of an Airy equation: d 2 I / d X  2 = .311, 

where X = x / L  a and L~= (12l~) 1/2. One also finds L~ from Eq. (13) with 
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D(La) = Dole/La. The asymptotic expansion of I and therefore of the trans- 
mission coefficient T is (21) 

T,~ ( L/L~)-I/4 exp[ - ( 2/3 )( L/L~) 3/2 ] (19) 

One expects from an argument similar to that of Section 3.1 that this law 
is valid only for L > La. For L < La, one expects 

T ~  exp[ - (L/La) 3 ] (20) 

As before, the reflection coefficient is given by R = 1 - To(L~), where T o is 
given by Eq. (8), which yields (19) 

R = 1 - (le/la) 2/3 (21) 

Comparing this result (21) with the classical diffusion case given by 
Eq. (12), we recover the result of Anderson, ~ from which one concludes 
that absorption (as measured by one minus the reflection coefficient in a 
semi-infinite slab geometry) decreases near the mobility edge. Less energy 
is absorbed in the medium in the localization regime. As an illustration, 
take le / la~lO -3. This gives a total dissipation 1 - R ~ 3 x l 0  -2 from 
Eq. (12) and a smaller 1 - R ~  10 - 2  from Eq. (21). This is in contrast with 
the reduced dissipation length L] given by Eq. (15), which implies a larger 
attenuation. 

3.3. Renormal ized Absorpt ion versus Renormal ized 
Dif fusion Coef f ic ient  

Since the contradictory results of John (18) [Eq. (15)] and Anderson (19) 
[Eq. (21)] can both be understood within our framework, we are now in 
position to unravel the contradiction. 

3.3.1. Competition between Renormalized Disssipation and Diffu- 
sion Coefficient. Localization increases the absorption, i.e., decreases la 
to L],  but it also decreases the diffusion coefficient D according to Eq. (5). 
As a consequence, the effective penetration of the wave is decreased in the 
absence of absorption, since the transmission coefficient goes from an le/L 
to an (le/L) 2 dependence. The renormalization of the diffusion coefficient 
(5) tends to prevent the wave from entering significantly in the random 
absorbing medium and therefore competes with the increase of the renor- 
malized absorption coefficient. It turns out that the decrease in wave 
penetration wins over the increase of absorption coefficient, leading to a 
global increase of the reflection coefficient, in agreement with ref. 19. This 
effect can be viewed as a kind of increased impedance mismatch due to 
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localization which prevents the wave from penetrating the absorbing 
medium and therefore which "protects" it from being absorbed. 

3.3.2. Case of  the "Cavity" Geometry. The competition between 
"penetration in the medium" and attenuation can be made clearer by the 
analysis of the cavity configuration where the wave is created inside the 
diffusing medium. In this case, we can study a spherically symmetric 
geometry, where r represents the distance from the origin where the 
source emits isotropically a power P~. Then, Eq. (3) is replaced by 
r-20{r2D(r)~I /~r}/~r-I /~a=O. If D ( r ) i s  a constant, it simplifies to 
r-1 Q2(ri)/O r _ I /D~  = O. 

In the diffusing regime (le >> l~), for l f =  0, the wave power flux at a 
distance r from the source is J ( r )~  PJ47cr 2, leading to an outgoing power 
4~zrZJ(r) = P~ corresponding to the conservation of the energy. For I f  :~ 0, 
J(r) ,~ Pj-2e-"/L~ leading to an outgoing power at distance r of the order 
of P~e -41~ with La = (l~l~) 1/2 given by Eq. (9). 

In the critical regime, we can solve approximately the diffusion equa- 
tion in the presence of absorption and obtain the outgoing power, which 
is of the order of ~21) 

T~P~(r/L~)3/2exp{-(2/3)(r/L~) 3/2} where L~=(12ela) 1/3 (22) 

For r~>La, only a vanishingly small proportion of P~ leaks out of the 
cavity of size r; the rest of the power is absorbed by the medium. 

The comparison between the cavity and the stab geometry shows that 
when the wave is completely inside the medium, the localization regime 
leads indeed to an impressive increase of the absorption, in agreement with 
ref. 18. However, when the wave must enter the medium as in the slab 
geometry, the renormalization of the absorption is more than compensated 
by the reduced penetration of the wave. 

3.4. Loca l i za t ion  R e g i m e  

For le < lc, D vanishes at large scales. The transport of the energy is 
slower than diffusive. From very general arguments, (2,4,2~ essentially 
reasoning connecting the transmission coefficient in energy to the conduc- 
tance by the Landauer formula (1,4) G= (2e2 /h)T / (1 -T) ,  one expects a 
transmission T in the absence of  any dissipation decaying exponentially with 
L as 

Tto ~ ,~ (le/L ) 2 exp(-L/~_  ) for L < ~ _  (23) 

~ [ ( l c - l e ) / L ] e x p ( - L / ~  ) for L > ~  (24) 
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where the localization length 4 -  is given by Eq. (6) near the critical point 
le = lc ( ~ 2  according to the Ioffe-Regel criterion). The (le/L) 2 prefactor in 
Eq. (23) ensures that T is continuous at le = lc. 

One could expect that, for a finite system of size L, the diffusion coef- 
ficient should scale like D(L)~ Doe c/r for large L, as suggested by the 
scaling of the conductance g =go e-z/C-. But in the scaling theory, (2~ all 
the subtlety comes from the fact that g still has a meaning in the localiza- 
tion regime, as does the conductivity a if one believes in the relation 
g = o_L d- 2. But D is related to a via the Einstein relation a = neZD (n is the 
density of carriers), which is wrong in the localized regime. (4)'2 We can see 
the difficulty directly on the propagator P(r, t), which is proportional to 
the probability for a wave packet to be at position r at time t starting from 
the origin at time 0: 

P(r, t )~exp(-rZ/Dt)  for r < ~ _  

or P(k, og)~(kZ-i~o/D) -1 for k > ~  1 (25) 

P(r , t )~exp( - r / r  for r > ~  

or p(k, oo),,~(k2+~_2) i for k < ~ 5 1  (26) 

where P(k, co) is the spatiotemporal Fourier transform of P(r, t). Equation 
(25) shows that the mean square displacement ( r  2) scales as Dt for 
t < r whereas it saturates a t  ~2 at larger times as seen from Eq. (26) 
and known from a rigorous result. ~23) This behavior is incompatible with 
the scaling one would obtain from the assumption D(L)~ Do e-L/c-, since 
this would lead to r ~ 4 - l o g  t [-with the help of the usual relationship 
r2~ D(r)t] in obvious contradiction with the rigorous result. r Intuitively, 
the finiteness of ( r2)  comes from the fact that the localized modes which 
are visited by the initial wave packet prepared around the origin are 
coupled only exponentially to the wave packet and this exponentially small 
coupling enforces a finite energy mean square displacement. 

An idea of the scaling of D in this regime may come from the classical 
definition 

D = lim (2 dt)-I f dar ( r -  r') e P(r, r', t) 
l "-'~ -{-o(3 

(27) 

Using the form (25) and (26) for P(r, r', t) yields 

D ~  Dot_/t for t > t_ ~ ~2 /Do (28) 

2 1 am grateful to a referee for a judicious remark on this point. 
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Expression (28) reconciles the existence of a scaling for D with the rigorous 
result. (23) It shows that the above difficulty comes from a bad choice of the 
scaling variable, which must be the time instead of the space position. We 
can now use this scaling for the discussion of the transmission and reflec- 
tion in the presence of dissipation characterized by a dissipation time 
~a = l Jc :  

For ra < tc, the dissipation occurs before the true strong localization 
regime and the discussion is similar to the one in the critical regime for 
le ~> lc of Section 3.2. 

For  ra > tc, we enter the true strong localization regime, which is very 
difficult to analyze quantitatively. 

4. C O N C L U S I O N  

The experimental signature of classical wave Anderson localization has 
been discussed with particular attention to the competition between 
localization and dissipation. The role of dissipation has been discussed 
previous ~17~ in relationship with the width of the "external" and "internal" 
resonances as a mechanism which prevents efficient scattering and therefore 
the attainment of the strong localization regime. Bulk dissipation through 
damping of the wave also plays a crucial role in an experimental setup and 
a strong attenuation makes the observation of localization difficult. 
However, the localization regime reveals itself in a strong increase of dis- 
sipation in the spherical cavity geometry but in an increase of the reflection 
in a slab geometry. These results suggest performing experiments involving 
both geometries in order to obtain a clear-cut experimental signature of 
Anderson localization. The cavity geometry could be obtained with the use 
of optical fibers as light sources inside the disordered medium. I hope that 
the present paper will be useful for analyzing future experiments on the still 
elusive localization in the classical wave context in three dimensions. These 
results could also be of practical interest, for example, in the conception of 
new absorbing or reflecting materials. 
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